
N95- 19759 /

..-..

The Computer Aided Aircraft-design Package (CAAP)
By Guy U. Yalif >,
(617) 973-1015 V-- / _

Abstract

The preliminary design of an aircraft is a complex, labor-intensive, and creative process. Since the

1970's, many computer programs have been written to help automate preliminary airplane design.
Time and resomr.e analyses have identified, "a substantial decrease in project duration with the
introduction of an automated design capability" (Ref. 1). Proof-of-concept studies have been
completed which establish "a foundation for a computer-based airframe design capability" (Ref. 1).
Unfortunately, today's design codes exist in many different languages on many, often expensive,
hardware platforms. Through the use of a module-based system architecture, the Computer Aided
Aircraft-design Package (CAAP) will eventually bring together many of the most useful features of
existing programs. Through the use of an expert system, it will add an additional feature that could

be described as indispensable to entry level engineers and students: the incorporation of "expert"
knowledge into the automated design process.

Introduction

It is widely recognized that good engineers need not only the textbook knowledge learned in

school, but also a good "feel" for the designs with which they are working. This "feel" can only be
gained with both time and experience. An expert system is an ideal way to codify and capture this
"feel". This idea is the key feature of CHAP. With this package, engineers will be able to use the

knowledge of their predecessors, as well as learn from it. The potential value of such a program in
aiding the engineering professionals as well as the student is great.

The ultimate goal of CAAP is to design a plane in an intelligent way based on user specifications.
A rough-sizing configuration is created from user inputs and then analyzed using rule based
programming. Throughout the design process, the user is given total access to the CAAP database,
which is implemented using object oriented programming. The user can see how variables affect
each other, view their present values, and see, create, and arrange rules in a customizable fashion

using "Toolbox" fries. CAAP exists as a core program with Toolbox fries that add functionality to
that core, similarly to the popular program "MATLAB". CAAP's core program has been written
while its Toolbox files are still in development.

System Overview

Preliminary aircraft design, as described in above, is a multi-faceted problem whose features have
driven the choice of software platform used to implement CAAP. This section will detail the
features that led to a CLIPS based implementation for CAAP. One aspect of the usefulness of an
expert system to the CAAP package has already been discussed.

The design process is a potentially iterative procedure. This is best explained with an example.
During a hypothetical airplane design, one might re-size the wing five times. On the other hand, it

is possible that the engineer will not alter the original fuselage. The possibility of iterative re-design
for some components and not for others defines a potentially iterative process. Airplane design is
such a process, and it is therefore well modeled by the rule based programming syntax of an expert
system.

As other designers have noted, "tremendous amounts of data and information are created and

manipulated [during the aircraft design process] to produce numerous parts which are eventually

3O3

assembled to a sophisticated system k is becoming clear that a critical issue to effective design
is the efficient management of design data" (Ref. 2). The data produced during the design process
is voluminous at the very least, but it is not haphazardly arranged. The information needed to

design a plane falls into organized patterns. Specifically: a hierarchical structure exists for most
components of an airplane. One such component is engine classification, as illustrated in Figure 1.
This figure diagrams the hierarchy that is used to describe engines in CAAP. This type of logical
hierarchy exists throughout the airplane design process.

The dataused duringairplanedesigncan be very complicated.Each partof theplane,such as the

engine,has itsown specifications.Each partalsocontainssubparts,justas theengine has a

turbine,compressor, and fuelpumping system.Each of thesesubpartshas itsown specifications

inadditiontosub-subparts.Therefore,designdataneeds tobe arranged inan orderedmanner that

isreadilyaccessibleand understandabletotheuser.ObjectOriented Pmgran_1_g is.usefulfor
storing the complex, voluminous, and hierarchically arranged data proauceo aurmg a.u'piane
design. The usefulness of OOP has been recognized elsewhere in the aerospace industry. In a
study entitled "Managing Engineering Design Information" (Ref. 2), ten different data storage
methods were examined. The conclusion: "The object-oriented data model was found to be a better

data modeling method for modeling aerospace vehicle design process" than any of the others
studied (Ref. 2).

OOP also facilities the organization of the large number of routines available to aid in aircraft

design. Effective routine organization is a desirable quality of any airplane design program. CAAP
seeks to accomplish routine organization in two ways. First, routines are grouped into the Toolbox
files introduced above. Second, within each Toolbox, different equations are applied to different

parts of the airplane as is appropriate. Having the ability to separate the equations, accord'.m, g to
airplane component aids in the logical organization of the program. Such separauon a_so increases
the efficiency of CAAP. For example, it would be a waste of computational time to have the aspect
ratio rule searching instances of the FUSELAGE class for possible span and area values. OOP and
CLIPS m-time modules allows the programmer to implement such class-specific routine

separation.

As discussed above, the order of execution of the routines that analyze an airplane cannot be
determined before run-time because of the potentially iterative nature of design. The routines

themselves, however, are composed of equations that do need to be executed in a predetermined

order. For example, the routine that determines the range-payload curve needs to add up the ran,ge
covered during climb, cruise, and descent over and over again until the desireo ttrmtmg, paytoans
are reached. This is an ordered process that is best modeled by a procedural programming

paradigm.

The desirability of using multiple programming paradigms has been discussed above. Because of
these needs, CLIPS was chosen to implement CAAP. CLIPS provides useful and effective rule
based, object oriented, and procedural programming paradigms as well as a high level of cross-
paradigm interactions. CLIPS is also offered on a wide variety of hardware platforms, ensuring its
ability to the student and professional alike.

A Macintosh platform was used to implement these program design goals. The Macintosh was
chosen because of the widespread accesstoMacs, as opposed tothe limitedaccessavailableto

more powerful UNIX workstationssuch as IRIS'sor Sun's.Nonetheless,ifa user had accessto
theseworkstations,CAM' would be fullyportabletotheirenvironments.CAAP's textbased user

interfacehas been writtencompletely inCLIPS. A second,graphicallybased userinterface,

however, has been designed strictlyforMacintosh use.CAAP has been successfullyrun on many

differentMacintosh models, although no portingtestshave been performed forotherplatforms.

3O4

It has been recognized that a modular layout "will preserve the ability for independent expansion at
a later date" (Ref. 3). This key concept is reflected in CAAP's design. As Kroo and Takai have
succinctly stated, "If the founding fathers did not envision that future aircraft might employ
maneuver load alleviation, winglets, or three lifting surfaces, it may be more expedient to rewrite
the code than to fool the program into thinking of winglets, for example, as oddly shaped stores"
0tef. 4). With a sectioned program, such problems can be quickly alleviated with the addition of
another Toolbox or an upgrade to an existing one.

As mentioned above, CAAP is organized into a central program and a variety of Toolboxes which

add functionality to the base program. The core program represents all of the code that is necessary
to run an expert system which utilizes CAAP's data structures. As a result, this code has the

possibility of being recycled in the future. The Toolboxes will add functionality to the core
program. If someone wishes to run CAAP at all, they need to possess the core program. If
someone also wishes to perform weight sizing of their aircraft, they also need to possess the
Weight Toolbox. If a certain Toolbox is not present while a user is designing an airplane with
CAAP, the part of the analysis that the Toolbox is responsible for will not be completed.
Continuing with the previous example, if the Weight Toolbox is missing, no weights will be
assigned to the various components of the plane. Missing Toolboxes could prevent an airplane
from being completely designed. Nonetheless, arranging a program in this fashion allows users to

customize their personal version of CAAP as they desire. The user will, as a hypothetical example,
have the ability to choose a Roskam Weight Toolbox instead of a Raymer Weight Toolbox, if they
so desired. In addition, if the user does not want CAAP to perform a certain kind of analysis, the
Toolbox based program allows them to disable a segment of code analysis easily. It is worth
noting that no time consuming re-compilation is presently necessary to remove a Toolbox from

CAAP. A simple menu option allows users to choose which Toolboxes will be loaded at start-up.

Mimicking the real engineer, CAAP's core program will prompt the creation of a rough, initial
sizing for an airplane. The code will then analyze this initial configuration of the plane. If the given
configuration does not meet one of the user's performance specifications, or if the plane does not
pass the appropriate FAR regulations, CAAP will modify a particular part of the plane.

A diagram of the system architecture that will accomplish these tasks is presented in Figure 2. The
diagram depicts the interactions between CAAP's run-time modules. Into each of these run-time

modules will be loaded routines that perform certain functions in the airplane design process. For
example, the Performance Module will contain routines that determine performance estimates.
Run-time modules are not to be confused with Toolbox fries. Toolbox Ides are files that contain

routines organized in an arbitrary manner chosen by the user. Run-time modules group routines by
functionality only.

The CAAP core program is presented around all of the run-time modules in order to emphasize that
it is the core code that drives all of the routines within the run-time modules and allows them to

perform their allotted analytical tasks. The Initial Sizing Module produces the initial parameters for
the fn'st configuration. The rest of the modules then analyze, alter, and re-analyze the subsequent
configurations. The final plane will be presented to the user through the routines in the Geometry
Graphics Module. The user will then be able to change the proposed solution/configuration, and
the process will start over again. This time, however, the "old" solution with the user's
modifications will become the "initial configuration".

The Rule Writing Utility

The rules that make up CAAP need not only to perform their prescribed functions, but also to

provide variable dependency information to the routine that performs variable assignments for
CAAP. AS described later in the Consistency Maintenance section, if a variable in the system is

305

calculated, all of the variables that depend on its value must be recalculated. It is useful to maintain

a data storage system which can provide CAAP with these variable dependencies. Rules are no
longer written in their traditional formal In previous versions of CAM', when a program
developer wanted to add a rule to the expert system, they have had to learn the syntax of rule

writing in CLIPS and then how to hard code the rule into the system. This required coding some
standard constructs that perform some of the repeated type checking that goes on within CAAP.
These constructs were usually very long and "messy", and therefore very time consuming to write.

In CAAP Version 2.0, programmers can add rules to the sy.stem by using the Rule Writing Utility
0tWU). In order to add a rule, the programmer creates an instance of the class

RULE_INFORMATION. They can do this manually or with option 8 of CAAP's main menu.
Both methods create objects containing several slots: one set of slots is created listing the input
variables and another set is created listing the output variables of the rule that is represented by the
instance. The input variables can be restricted to be equal, not equal, less than, greater than, less
than or equal to, or greater than or equal to some other value. The text of the calculation that will be
executed by the actual rule is also stored in a slot of the instance of RULE_IN ORMATION.
Therefore, the programmer needs only enter two sets of variables (input and output) and a string
representing a calculation (and some housekeeping information). The rest is handled by the RWU.

Before system operation beings, the RWU code creates the class RULE_INFORMATION and the
rule "make_roles." "Make_ruies" creates expert system rules and places them into the Rule Base

based on the existing instances of RULE_INFORMATION. It also adds all of the constraint
checking that is necessary for proper CAAP operation. Such a utility could be useful in other
Expert Systems that involve the same type of input and output for each rule. As previously
mentioned, such code recycling opportunities are an important aspect of CAAP.

Once "make_roles" has f'Lred, each rule is represented in two places: one sense of the rule exists in
the Rule Base as an actual expert system rule. Another sense of the rule exists in the Object
Oriented Database as an instance of the class RULE_INFORMATION. This second representation
of the rule is used by the assignment routine to satisfy its need to know how variables depend on
each other. Assignment routine operation and the way the routine uses variable dependency
information are described in the Consistency Maintenance section.

The present method of double representation is more efficient than what was possible with CLIPS

5.1. Previously, if a programmer wanted to add a rule with five inputs and five outputs, they
would have to check that 5 X 5 or twenty-five separate variable dependencies were included in the

dependency functions (in addition to the constraint checking information). In Version 2.0, the
programmer simply needs to list the five inputs and the five outputs of the rule at the time of
RULE_INFORMATION instance creation. This brings CAAP a large step closer towards

decreasing the future programmer's work load. Additions to the Rule Base can now be generated
more easily and more quickly than before.

The Core Program

CAAP's Core Program has been given the basic abilities needed to design an airplane. At the time

of this writing, the Core Program still requires the addition of large amounts of data in the form of
Toolbox fries in order to be able to design an airplane. Nonetheless, the full functionality of the
Core Program has been implemented. The main menu of the package appears in Figure 3.
Descriptive English equivalents are used at every point throughout the user interface. A lot of
attention was focused on making CAAP user friendly in order not to loose any potential users due
to the newness of the program.

3O6

The userispresentlyallowed tocream airplanes,modify thespecificationsthe airplaneisdesigned

to,and change the airplane'sdescribingvariablevalues.The usermay save and load airplanes

from disk.The userisalsogiven complete accesstotheCAAP database.Designersareallowed to

look atthevariablevaluesthatrepresentan airplane,eitherindividuallyor ina summary shcet

formal They may alsolook atthedependenciesthatexistwithintheCAAP database.This valuablc

toolwould telltheuser,forexample, thattheaspectratiodepends on the wing areaand the wing

span foritsvalues (reversedependencies),and thatwhen thewing span ischanged, theaspect
ratiowillhave tobc recalculated(forwarddcpcndcncics).

The userisallowed tosec a listof allvariableswhich have becn dcfinedtoCAAP and which are

not used inany of thepresentlyloaded rules.This can helpdesigncrsloadthe appropriate

Toolboxes or add ruleswhere necessary.Users can writerulesduring run-timeand add them to

Toolbox fries.This featureallowsforsimple expansionof CAAP by individualusersinthe future,

and,combined with theToolbox manipulationfunctions,has allowed CAAP tobecome a self-

modifiableprogram. With thisability,CAAP can evolvetomcct individualsneeds as theycream

and change Toolbox filesand therulesthatpopulatethem.

The userisgiven some aestheticcontrolsoverCAAP outpuL The usercan look atCAAP's internal

variablesrepresentations.Toolboxes can bc created,dclctcd,and loaded duringrun-time.Users
can view which Toolboxes have been loaded intotheCAAP databaseas wellas choose which

Toolboxes toload each time CAAP startsup. The dynamic use ofToolbox filespresentssome

interestingsituations.The file,scan actas a medium forknowledge exchange inthefuture.For

example, Joc can designa plane withtheToolboxes he has builtover time.He can thenadd

Mary's rulestohispersonalToolbox, and redesignhisplanein ordertodiscoverhow Mary's

know-how can improve hismodel. Such an interactiveexchange ofinformationcould bc very

useful,especiallyinan teachingenvironment.

Consistency Maintenance and The Availability of Several Routines to
Calculate One Variable

There are several different methods available to estimate almost any of the parameters used in
airplane design. Different sources will quote different methods, each with its own result. A
consistent method for routine execution is needed. When there is more than one equation or routine
available to calculate a given parameter, CAAP will select the most advanced one for which all of
the input variables have been determined. For example, the airplane drag coefficient can be
calculated using equation (1) or with a drag build-up.

A

Ca. = C_. A +[2(A + 4)/(A + 2)]

Ct, = liftcurve slopefora finiteliftingsurface

Ct. = section lift curve slope

A = aspect ratio

(I)

Ifthe components of theplane have bccn defined,thelatter,more advanced drag estimation
method willbe used. Ifthecomponents have not yet been defined,theformer,simplermethod will

bc used.Importantly,once thecomponents have been defined,theLHS of thedrag build-uprule

willbc satisfiedand CAAP willrecalculatethe dragbased on the more advanced drag build-up.All

calculationsarebased on themost advanced routineavailable,due to therulebased programming

implementationchosen forCAAP.

Rule "advancedness" will be represented by a priority associated with each rule. This priority is
stored in a "rulepriority" function in CAAP's core program. It is presently used to ensure that the

307

Inference Engine sees more "advanced" rules more quickly than it sees more primitive rules.
Rulepriority is used by the RWU to set rule saliences during system initialization. This procedure
improves program efficiency by decreasing the likelihood that a particular variable will be
calculated many 6rues by successively more advanced routines when a very advanced one could
have done the job originally. Rule prioritization also allows the user to be confident that the crude
initial estimates used in the Initial Sizing Toolbox win not be used in the final configuration. As
soon as the airplane begins to take shape, the Initial Sizing Toolbox's estimates will be replaced
with more advanced values 1.

If two methods are similarly "advanced", one method will be chosen over the other arbitrarily, but
not randomly. If the designer has a preference as to which method is used by CAAP, he or she can
specify this to the package. The "rulepriority" function alleviates the need for addressing the
situation when two expert recommendations agree. Either they will have different priorities, or
their location on the agenda will determine which is fired.

Consistency Maintenance and Parameter Modifications

During the design process, configurations are created and analyzed. If the analysis shows a given
configuration to be inadequate in some way, the rules within the Expert run-time module will
modify one of the design parameters of the given confgurafion, in effect creating a new
configuration. Until the effects of this single modified parameter have been propagated throughout
the airplane, the configuration will be inconsistent. In another scenario, an advanced routine might
recalculate a design parameter previously calculated by a more primitive routine. Again, until the

effects of this change have been propagated throughout the system, an inconsistent configuration
will exist. The solution to this problem follows.

Consistency maintenance will be accomplished in two ways. When a rule within the Expert run-
time module modifies an airplane design parameter, it will have to do so in a "responsible" manner.
For example, suppose the Expert rule, for an "expert" reason, decides that the aspect ratio of the
wing needs to be changed. If it simply changes the aspect ratio, the span and/or wing area will be
inconsistent. Therefore, the Expert rule will have to also change the span or the wing area. The rule
could, for example, adjust the aspect ratio while keeping the wing area constant. In other words,

the Expert rule will have to look at the input variables that determine the value of the design
parameter and modify them so that they are consistent with the new value of the changed variable.

The second consistency maintenance procedure will be based on computational paths. Figure 4
presents a diagram of a hypothetical set of computational paths. Each box on the diagram
represents a variable. The directed connections represent the dependency of a variable on the value
of other variables.

Suppose that the variable in the shaded box has just been redefined, perhaps by a rule from the
Expert run-time module or by an advanced estimation routine. The value of every box
"downstream" of the shaded box is now inconsistenL The "downstream" variables are represented
by the presence of an "X" in the variable box. The "downstream" variables need to be recalculated
as if they had never been determined in the fast place. Each rule will have access to the list of
variables which depend on the variable in the shaded box (i.e. Xl in this example). This list is

stored in instances of the RULE_INFORMATION class, introduced in the Rule Writing Utility

IThis does not necessarily have to occur, ffone is not careful. It would be possible for the airplane to be presented
as a final product without enough of it having been calculated to replace the Initial Sizing Toolbox's estimates. This
would be an absurd situation, and it would w.sult in problems. CAAP will not present a plane to the user unless a
minimum set oCpmmneten have been calculated m a sufficient level of "advancedness'. This way, no Initial Sizing
Toolbox estimates will make their way to the user.

308

section. The rule will erase, or undefine 2, all of the variables that depend on the changed variable

(i.e. it will undefme X1). The Toolbox will then undefine all of the variables that depended on

those variables, and so on until the there are no more dependent variables to undefine (i.e. X2, X3,

.... X6). This systematic undefining is called the "downstream" erasure procedure. It has been

coded as part of the "assign" routine that is used for all variable assignments. Every rule must use
the "assign" routine. After a "downstream" erasure, the other rules in CAAP will automatically
recalculate the undefined "downstream" variables. This will occur since the LHS of CAAP rules is

satisfied when the input variables for the rule are undefined.

A problem with the method of consistency maintenance presented in Figure 4 will arise if any
loops exist within the computational paths. A discussion of this problem is beyond the scope of
this paper, and the problem has only been partially solved. A full solution to the "Loop Problem" is
one of the major remaining issues facing CAAP.

Practical Limitations

The future of CAAP will focus on three different areas: the core program, the Toolboxes, and the
user interface. The essentials of the core program have been entirely written. Some extra
functionality has also been added to the program. Nonetheless, there is always room for
improvement and CAAP is by no means complete. Among the pieces of code not yet written is a
numerical optimizer. Such code could provide CAAP with a way to make "expert"
recommendations when no rules from the Expert run-time module apply to a given configuration.
If no rules exist to help, CAAP could tum to numerical optimization methods in order to determine
what changes to make to a configuration in order to make it meet all user and FAR requirements. A
simultaneous equation solver could significantly facilitate solving the airplane design problem.

The Toolbox fries need to receive a significant amount of data. Proof of study Toolbox files have
been implemented and successfully tested, but there remains a lot of data to input in order to fully
design an airplane. The graphical user interface ran into difficulties associated with system level
Macintosh programming. Finding an alternative to friendly user interactions will be a priority for
CAAP in the future.

The first category of plane that CAAP should be able to completely design will be the fight, general
aviation, non-acrobatic, single engine aircraft. The graphics for displaying the airplane are next on
the implementation lisL Eventually, trend studies and increased user involvement in the design
process could be added. For example, if the user wished CAAP to produce several final designs
instead of one, this could he done. If the user wished to watch CAAP fire one rule at a time, this

could be done. A utility could be added to allow users to see which rules are firing at any given
time. This would provide the user with a better "feel" for how the package is going about
designing their airplane.

Conclusion

A firm theoretical foundation has been developed for CAAP. The problem of designing an airplane

has been laid out and implemented using rule based, object oriented, and procedural programming
paradigms. Rule based programming enables CAAP to capture expert knowledge and to mimic the
potentially iterative nature of preliminary airplane design. Object oriented programming handles the
voluminous, complex, and hierarchically arranged data produced during airplane design.

2CLIPS 6.0 no longer supports undefined slot values. It is necessary to have such reserved values for aiq31ane
variables that may take on a range of values. In order to satisfy the LHS's of any of the rules, the LHS's must
contain tests for variables to see if they have not yet been calculated, that is that they are undet"med. A typical
undefined value is -le-30 for a floating point variable.

3O9

Procedural programming is used to implement the actual analysis routines necessary for
enginoering design. CAAP has realized core program implementation and proof-of-concept
Toolbox f'de creation and test. CAAP can begin designing airplanes and awaits the addition of more
data in order to be able to complete the design process. CAAP is still in the developmental phase.

310

Figures

Figure 1 - Engine Classifications in CAAP

311

CAAP Core Program controls all run-time modules

Initial Sizing 1

Module J

Analysis Modules / __.Requirements Modules
Weights

I Modulel [User [FAR

• " IRequirements /Requirements

rPerf°rmance } L Module L Module

, Module J .j

Common Object Oriented Data Base

Figure 2 - System Architecture

312

Main Menu

1) Create an airplane
2) Modify requirements or plane
3) Analyze ah'planes
4) Save an airplane to disk
5) Load an airplane from disk

6) Look at an airplane
7) Look at slot dependencies
8) Add a rule to the database

9) Look at internal variable representation
10) Manipulate Toolboxes
1 I) Miscellaneous
12) Quit

Please choose an option (0 to reprint menu)>

Figure 3 - CAAP Main Menu

Figure 4 - Consistency Maintenance Example

313

References

1. Newman, D., and K. Stanzione. Aircraft Configuration Design Code Proof-Of-Concept: Design
of the Crewstation Subsystem. Proc. of the AIAA-Aircraft Design Systems and Operations

Meeting. 23-25 Sept. 1991. Baltimore: AIAA paper No. 91-3097, 1991.

2. Fulton, R. E., and Yeh Chao-pin. Managing En_ineerin_ Design Information. Proc. of the
AIAA/AHS/ASEE Aircraft Design, Systems and Operations Conference. 7-9 Sept. 1988. Atlanta:

AIAA paper No. 88-4452, 1988.

3. Roskam, Jan, and Seyyed Malaek. "Automated Aircraft Configuration Design and Analysis."
SAE Technical Paaer Series No. 891072 (1989): General Aviation Aircraft Meeting & Exposition
(Wichita, KS), 19-89.

4. Kroo, I., and M. Takai. A Ouasi-Procedural. Knowledge-Based System for Aircraft Design.
Proc. of the AIAA/AHS/ASEE Aircraft Design, Systems]md Operations Meeting. 7-9 Sept. 1988.
Atlanta: AIAA paper No. 88-4428, 1988.

314

